skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xing, Yulong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We consider a family of variable time-stepping Dahlquist-Liniger-Nevanlinna (DLN) schemes, which is unconditionally non-linear stable and second order accurate, for the Allen-Cahn equation. The finite element methods are used for the spatial discretization. For the non-linear term, we combine the DLN scheme with two efficient temporal algorithms: partially implicit modified algorithm and scalar auxiliary variable algorithm. For both approaches, we prove the unconditional, long-term stability of the model energy under any arbitrary time step sequence. Moreover, we provide rigorous error analysis for the partially implicit modified algorithm with variable time-stepping. Efficient time-adaptive algorithms based on these schemes are also proposed. Several one- and two-dimensional numerical tests are presented to verify the properties of the proposed time-adaptive DLN methods. 
    more » « less
  2. Free, publicly-accessible full text available February 1, 2026
  3. Free, publicly-accessible full text available February 25, 2026
  4. Free, publicly-accessible full text available February 1, 2026
  5. In this paper, we study ultra-weak discontinuous Galerkin methods with generalized numerical fluxes for multi-dimensional high order partial differential equations on both unstructured simplex and Cartesian meshes. The equations we consider as examples are the nonlinear convection-diffusion equation and the biharmonic equation. Optimal error estimates are obtained for both equations under certain conditions, and the key step is to carefully design global projections to eliminate numerical errors on the cell interface terms of ultra-weak schemes on general dimensions. The well-posedness and approximation capability of these global projections are obtained for arbitrary order polynomial space based on a wide class of generalized numerical fluxes on regular meshes. These projections can serve as general analytical tools to be naturally applied to a wide class of high order equations. Numerical experiments are conducted to demonstrate these theoretical results. 
    more » « less